[Total No. of Questions - 9] [Total No. of Printed Pages - 3] (2125)

15094

B. Tech 4th Semester Examination Fluid Machinery (OS) CE-4003

Time: 3 Hours Max. Marks: 100

The candidates shall limit their answers precisely within the answerbook (40 pages) issued to them and no supplementary/continuation sheet will be issued.

Note: Attempt Five questions in all, selecting one from each section A, B, C and D. Section E is compulsory.

SECTION - A

- A jet of water having a velocity of 40m/s strikes a curved vane, which is moving with velocity of 20m/s. The jet makes an angle 30° with the direction of motion of vane at inlet and leaves at an angle of 90° to the motion of vane at outlet. Draw the velocity triangles at inlet & outlet. Also determine the vane angles at inlet and outlet so that water enters and leaves the vane without shock.
- A pelton wheel is having a mean bucket diameter of 1m and is running at 1000 r.p.m. The net head on pelton wheel is 700m. If the side clearance angle is 15° & discharge through the nozzle is 0.1 m³/s, Find.
 - (i) Power available at the nozzle.
 - (ii) Hydraulic efficiency of the turbine. (20)

SECTION - A

3. The following data is given for Francis Turbine: Net Head=60m, Speed=700 r.p.m. Shaft Power=294.3 kW, η_0 =84% η_h =93%, flow ratio=0.20, breadth ratio n=0.1, outer dia of runner=2×inner [P.T.O.]

2 15094

diameter of runner. The thickness of vane occupy 5% of circumferential area of the runner, velocity of flow is constant at outlet. Determine:

- Guide blade angle.
- (ii) Runner vane angles at inlet & outlet.
- (iii) Diameter of runner at inlet and outlet.
- (iv) Width of wheel at inlet. (20)
- (a) What do you understand by characteristics curves of a turbine? Explain important type of characteristics curves with neat sketch. (10)
 - (b) What is draft tube? Explain its function and prove that pressure head at its entry point is less than atmospheric pressure. (10)

SECTION - C

- Discuss briefly the function, construction and operation of Hydraulic Ram. Also obtain on expression for the efficiencies of the Hydraulic Ram. (20)
- 6. Hydraulic turbine is to develop 845 kW when running at 100 r.p.m. under a net head of 10m. Workout the maximum flow rate and specific speed for the turbine if the overall efficiency at the best operating point is 0.92%. In order to predict performance, a 1:10 scale model is tested under a head of 6m. What would be the speed, water consumption of model if it runs under the condition similar to the prototype. (20)

SECTION - D

7. A centrifugal pump having outer diameter equal to two times the inner diameter and running at 1000 r.p.m. under a total head of 40m. The velocity of flow through the impeller is constant and equal to 2.5 m/s. The vanes are set back at an

15094

angle of 40° at outlet. If the outer diameter of impeller is 500mm and width at outlet is 50mm, determine.

3

- (i) Vane angle at outlet.
- (ii) Work done by impeller on water per second.
- (iii) Manometric efficiency. (20)
- 8. Derive an expression for the head lost due to friction in the delivery pipe of reciprocating pump with and without an air vessel. (20)

SECTION - E

- 9. (i) Define specific speed of turbine.
 - (ii) Define unit quantities.
 - (iii) What is difference between impulse and reaction turbine?
 - (iv) Define impulse-momentum principle.
 - (v) What is degree of reaction?
 - (vi) What is difference between Inward flow reaction and outward flow reaction turbine?
 - (vii) Define concept of negative slip in case of reciprocating pump.
 - (viii) What do you understand by 'Cavitation'?
 - (ix) Define Buckingham Pi-theorem.
 - (x) What is hydraulic efficiency of turbine? (10×2=20)